
Septemuber 1987 Report No. STJAN-CS-87-I 184 0
Also numbered K.SL-87-S7

AD-A 198 673 TKFLE (C0

Firmware Approach to Fast Lisp Interpreter

by

H. G. Okuno, N. Osato, wid 1. Takeuchi

Department of Computer Science

Stanford University
Stanford, CA 94305

DISTRIBUTIONSTAT
AIApproved for public releael

viitnibution ualwmitsd

...VV Y0
Y'

1, -1ZzV e"/

SECURITY CLASSIFICATION OF TI-i PAGE

Form AoprovedREPORT DOCUMENTATION PAGE M9iff oO0704-01u

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

2& SECURITY CLASSIFICATION AUTHORITY 3 DISTRIOUTION/AVAILABILiTY OF REPORT

211 DECLASSIFICATION' DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) SL MONITORING ORGANIZATION REPORT NUMBER(S)

STAN-CS-87-1 184 (KSL-87-57)

66 NAME OF PERFORMING ORGANIZATION 6bOFFICE SYMBOL I's NAME OF MONITORING ORGANIZATION

Computer Science Dept. J~ I f.Icbe
Ek. ADDRESS (City. State. and ZiP Code) 7b ADDRESS (City, State, and ZIP Code)

Stanford University
Stanford, CA 94305

Ba. NAME OF FUNDING /SPONSORING 8 b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION I (of ajzpbkl)

DARPA j_______F30602-85-C-OO 12

Sc. ADDRESS (City, State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM IPROJECT ITASK IWORKC UNIT
ELEMENT 40 11 NO NOACCESSION NO

III TITLE (include Security Classification)

Firmware Approach to Fast Lisp Interpreter

12. PERSONAL AUTHOR(S)
H. Okuno, N. Osato, and 1. Takeuchi

13a. TYPE OF REPORT 13b TIME COVERED T 14 DATE OF REPORT (tea, Month, Day) IS PAGE COUNT
IFROM____ TO__ _

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 1S SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on revirt , necessary and Identify by block number)
Ml!approach to speed up a Lisp interpreter by implementing it in firmware seems promising,

A microcoded Lisp interpreter shows good performance for very simple benchmarks, while it
often fails to provide good Performance Ii~r larger benchmarks and applications unless speedup
techniques are devised for it. This was the case for the TAO/ELIS system. This paper
describes various techniques devised for the TAG/ELIS system in order to speed up the
interpreter of the TAO language implemented on the ELIS Lisp machine. The techniques
include data type dispatch, variable access, function call and so on. TAO is not only upward
compatible with Common Lisp. but also incorporates logic programming. object-oriented
programming and Fortran/C-like Programming into Lisp Programming. TAO also Provides
concurrent programming and supports multiple users (up to eight users). The TAO interpreter
for those programming paradigms is coded fully in microcodes. In spite of rich
functionalltle, the speed Of Inie'peusid codes of TAO is comparable t0 that of comiledd codes
of commercial Lisp machine,. Furthermore, the speeds of the interpreted codes of the same
Program writtens in various Programming paradigms in TAO does not differ so much. This
speed balance is very important for the user.
Another outstanding feature of the TAO/ELIS system is its firmwavire development
environments. Micro Assembler and Linker are written in TAO. which enables the user to use
the capability of TAO in microcode,. Since debugging tools are also written in a mini-Lisp.
many new tools were developed in parallel to debugging of microcodes. This high level
ap proach to firmware development es'vironnients is very important to provide high productivity _________________

20 DISTRIBUTION/IAVAILABILITY OF ABSTRACT j21. ABSTRACT SECURITY CLASSIFICATION
C3 UNCLASSIFIEDAUNLIMITED 0 SAME AS RPT 03 OTIC USERSI

Z2& NAME OF OF5DiONSIBLE lNDIVIDOAL. 22b. TELEPHONE (include A#** Code) 22C 11 O I(.E !sYM9Oi

00 FORM 1473. 54 MAR 53 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions art obsolete

Igo.

Knowledge Systems Laboratory September 1987
Report No. KSL 87-57

Firmware Approach to Fast Lisp Interpreter

by
Hiroshi G. Okuno, Nobuyasu Osato and Ikuo Takeuchi

KNOWLEDGE SYSTEMS LABORATORY
Computer Science Department

Stanford University
Stanford, California 94305

and

Electrical Communications Laboratories
Nippon Telegraph and Telephone Corporation

3-9-11 Midori-cho Musashino
Tokyo 180 Japan

To Appear in Proceedings of Twentieth Annual 0
Workshop on Microprogramming (MICRO-20).

FIRMWARE APPROACH TO FAST LISP INTERPRETER

Table of Contents
1. Introduction 1
2. Background - the TAO/ELIS system 1

2.1. Overview of the ELIS Lisp machine 1
2.2. Firmware Development Environment 4
2.3. Language aspect of TAO 5

3. Bottlenecks of interpreted execution 5
3.1. Variable search 6
3.2. function call 6
3.3. type checking 7
3.4. real computation 7

4. Speedup techniques for Lisp interpreter 7
4.1. Usage of Tag 7
4.2. Variables in TAO 9

4.2.1. Mechanism of variable search 9
4.2.2. Preprocess of lexical variables 9
4.2.3. Variable cache 9
4.2.4. Preprocess of Instance variables 10

4.3. Function calls 11
4.3.1. Function invocation 11
4.3.2. Special dispatch of built-in message 11
4.3.3. Fast lookup of message-method table 11

5. Evaluation of the TAO interpreter 11
5.1. Benchmark results 11
5.2. Speedup of variable access 13

5.2.1. Lexical variables 13
5.2.2. Special variables 13
5.2.3. Instance variables 13

5.3. Speedup of function invocations 14
5.3.1. Function invocation 14
5.3.2. Method search 15

6. Discussion 15
I. Microinstruction Format 19
II. Micro code of binary search for id-messaae 20
Ill. Microcode of the body of the car function /Oic 21
IV. Evaluation of a form (car ...) copy 22

'NSCTED

SAccesioti For
NTIS CRA&f

L'TiC T r-. HAP

DIM

.

A',t'.'";I 3 ute

Abstract
The approach to speed up a Lisp interpreter by implementing it in firmware seems promising.
A microcoded Lisp interpreter shows good performance for very simple benchmarks, while it
often fails to provide good performance for larger benchmarks and applications unless speedup
techniques are devised for it. This was the case for the TAO/EL[S system. This paper
describes various techniques devised for the TAO/ELIS system in order to speed up the
interpreter of the TAO language implemented on the ELIS Lisp machine. The techniques
include data type dispatch, variable access, function call and so on. TAO is not only upward
compatible with Common Lisp, but also incorporates logic programming, object-oriented
programming and Fortran/C-like programming into Lisp programming. TAO also provides
concurrent programming and supports multiple users (up to eight users). The TAO interpreter
for those programming paradigms is coded fully in microcodes. In spite of rich
functionalities, the speed of interpreted codes of TAO is comparable to that of compiled codes
of commercial Lisp machines. Furthermore, the speeds of the interpreted codes of the same
program written in various programming paradigms in TAO does not differ so much. 1 his
speed balance is very important for the user. ("z. <-/
Another outstanding feature of the TAO/ELIS system is its firmware development
environments. Micro Assembler and Linker are written in TAO, which enables the user to us-
the capability of TAO in microcodes. Since debugging tools are also written in a mini-Lisp,
many new tools were developed in parallel to debugging of microcodes. This high level
approach to firmware development environments is very important to provide high productivity
of development.

FIRMWARE APPROACH TO FAST LISP INTERPRETER

1. Introduction
The TAO/ELIS system is the first milestone of the New Unified Environment (NUE) project

at NTT Software Laboratories. ELIS [5] is a Lisp machine family; one is a breadboard
machine and the other is a VLSI machine 114]. TAO [7, 11, 12, 13] is a superset of Common
Lisp and designed as a kernel language for NUE on the ELIS machine. However, TAO is not
a simple Lisp system, but a multi-paradigm language which incorporates logic programming,
object-oriented programming and Fortran/C-like programming into Lisp programming.

We consider that Lisp interpreter is essential from the following three points-of-view.

[Application] Interpretive execution of programs is required by some application
programs. For example, many expert system building tools support sophisticated
programming environments, while they often lack a rule compiler and execute user-
specified Lisp programs interpretedly.

* [Programming Environments] The interpreter is considered as an important
component of interactive programming environment such as stepper, editor, tracer,
and error break.

* [Debugging tool] One of the best debuggers for Lisp programs is the interpreter.
And the interpreter is the easiest and clearest tool for the user.

These are our motivations to design and implement a fast Lisp interpreter with full-fledged
facilities. Furthermore, the speed of each programming paradigm should be balanced so that
the user can implement his idea naturally by using multiple paradigms which is suitable to his
conceptualization of applications.

Our approach to speed up the interpreter is to implement it in microcodes. Microcoded Lisp
interpreter shows a good performance for very simple benchmarks, but it often fails to provide
a good performance for some benchmarks and applications unless speedup techniques are
incorporated into it. This was the case for the TAO/ELIS system and we have been
developing various techniques of speedup for several years. In this paper, we discuss various
speedup techniques adopted in the TAO/ELIS system, their evaluation and applicability to
other systems. In Section 2, the background on the ELIS Lisp machine and the TAO language
is presented. Firmware development environments of the TAO/ELIS system is also discussed
in this section. They are written in TAO or a mini-Lisp, which raises the expressibility of
microcodes as well as gives flexibility and customizability to tools. The bottlenecks of
interpreted execution of the Lisp system are presented in Section 3, and their solutions are
given in Section 4. In Section 5. the TAO interpreter is evaluated.

2. Background - the TAO/ELIS system
This section gives an overview of the ELIS Lisp machine and the TAO language. Firmware

development environments are also discussed. S

2.1. Overview of the ELIS Lisp machine
The ELIS family has two types of Lisp machines; breadboard machine and %LSI chip

machine. The cycle time of each machine is 200nsec and 180nsec, respectively. VLSI chip is
manufactured by 2;sm CMOS technology [14]. Both machines are compatible at the level of
microcodes. The block diagram of CPU is shown in Fig. 2-1. All data given in this paper are
measured on a VLSI ELIS machine. The features of ELIS which influence the design and
implementation of TAO are summarizea below:

[Tagged architecture] Pointer is 32-bit wide with 8 bit tag included (Fig. 2-2).
Tags are used to specify various data types and speed up the interpreter. Various
combinations of tag branches are provided by the ELIS hardware.

* [Hardware stack] ELIS has 32K words stack and three stack pointers. Stack

OjS

FIRMWARE APPROACH TO FAST LISP INTERPRETER 2

t Data out 64b or 32b

--- --- --- --- -- Address 31b

I I32b I-----I A-Bus B-Bus 32b
---- -- I path 1----+ ------------

It I------ I Emit data

II II MGR II
----------- j<-----

ICAROICDROI ----- I------ 1< --- I-----I
------ I SDC1I 6b I I ISPI I V V I I

-- -- -- - -- - - -* - - - --- --- - - -

ICAR1ICDR1I ---- I ----i
------ <amISDC2 I5b IaI -- ISPZI 1 \\/ 1s

-- - - --- - - -I - -- - \ALU/ g~
ICAR21CDR21 -- -- - k I - - - -- - - -

------- ISDC3 I5b I I I SP3 I I I
-- - - -- - - - - I_--I -- - -I 132b

ICAR31CDR31 t I ----------

------------- -I

--------------------------------------- IpathlI------ ---+
I I 32b I-----I Y-Bus

-- ----------------

I Data in 64b

Figure 2-1: Block Diagram of the ELIS CPU

SO

FIRMWARE APPROACH TO FAST LISP INTERPRETER 3

31 24 0

I tag7 - tagO I pointer part I

Assignment of tag bits in TAO
tag7 -- for garbage collector
tag6 -- auxiliary use
tag5 -- atomic data if 0, non-atomic data otherwise
tag5 - tagO --- data type

Figure 2-2: Structure of Lisp pointer

overflow and underflow are checked by hardware and if such an overflow occurs, a
bit of processor status word (PSW) is set. However, microcode should check the
overflow by testing the bit. There is no hardwired interrupt. Stack operation is
performed in one microcycle.

" (Large Writable Control Store (WCS) for microprogramming] The capacity of
Writable Control Store is 64K 64-bit words so that the TAO interpreter and most
of system functions are coded in microcodes. For example, some primitives for
EMACS-like editor, TCP/IP software and Japanese text processing are coded in
microcodes.

" [Memory General Registers (MGR)] Four sets of 64-bit memory interface registers
called Memory General Register (MGR) are provided with three index registers
called Source Destination Counter (SDC) which points to any byte of MGR. Car
and cdr field of each MGR can be used as a memory address register or memory
data register. They also can be accessed by ALU as a source or destination operand.
Note that a 64-bit word (one Lisp cell) can be read or written between MGR and
memory. MGR with SDC can be used as byte manipulation buffers (for strings,
compiled codes, etc.)

" [Hardware check of memory access] If a memory operation is initiated to an illegal
pointer, that is, a memory address register (say, car or cdr field of some MGR)
points to a non-CAR-CDR-able address, the memory operation will be aborted
automatically. Tag-5 of a pointer specifies whether the pointer is CAR-CDR-able
or not (see Fig. 2-2). Therefore, a memory operation can be initiated without
checking the validity of CAR-CDR-ability. Since it takes three microcycles to
complete a memory operation, this hardware checking capability is very important
because it enables the programmer to fetch a data in advance without performing
such a check at the microcode level. This memory operation is called boc, which is
used in the body of the car function shown in Appendix 111.

Microinstructions are divided into four types shown in Appendix I. The type IV is reserved
for floating operations, but the current system implements IEEE standard floating operations
by microcodes. One of the powerful instructions is a set of tag branches (see Table 2-1).
Note that since there is no address field in the type Ill instructions, the linker should be
intelligent to handle the combination of a type III instruction and branch instruction.
Consider the following code:

(l1r8 (e rO #15) (br gel (irn 1null lreof)))

(lirn (- rO #12) (br z (IrO Irl)))

Ilrl, (jsr no store-byte))
llrl (mov r14)

(brc tag7 (Irl' lirl'')))

FIRMWARE APPROACH TO FAST LISP INTERPRETER 4

The instructions labeled by IrO and irl should be allocated to a consecutive address with
starting an even address. In addition, since the instruction labeled by I r :s of type II1, the
next instruction labeled by Ira should be allocated to the consecutive address. The three
instructions labeled by I rn, I null and I reof should be allocated to three consecutive
addresses and the address of 1 rn should be a multiply of four. The linker considers these
constraints of addressing and allocates instructions within the narrowest possible address range.

Table 2-1: Branch conditions on Tag field

Condition Meaning
(mnemonic)

tag7 branch if tag7 is set
tag6. tage branch if tag6 is set
tagS, tagcadbl branch if tagS is set
tagS-0 64-way branch according to tag5-0 bit
tagl- 33-way branch; branch to 33rd offset if tag5=l
tagl5-0 33-way branch; branch to 33rd offset if tagS-0
tag4-0 32-way branch according to tag4-0 bit
tagfil branch if tag5-0 is n3t zero
tagail branch if tag5-0 is zero .,l

2.2. Firmware Development Environment
The Micro Assembler and Linker are implemented in TAO itself. Therefore, the syntax of

microcodes is expressed in S-expression1. For example, Appendix III shows the microcode of
car function. The argument of car is given on the stack and the returned value is pushed oh
the stack. The microcode of binary search function is shown in Appendices II. Since the
Micro Assembler and Linker are written in TAO, the user can use the power of TAO in
microcodes. For example,

(mov t(se 2 16) tO))

is the same as

(moy 65538 tO))

That is, a form prefixed by t is evaluated before assembling. This evaluation may be
postponed till linking or global linking. In the following operation,

(I1bl (mov t(+ #10400000000 (getsym 'Ibl)) 0<S>))

the address of the instruction can be given as an operand at the time of linking.
The source of microcodes for the TAO interpreter consists of 112 files and its total size is

about 2.7M bytes. It takes about one and a half hour for the micro assembler and linker to
assemble and link all source files. The total size of used Writable Control Store is about 48K
words. Needless to say, microcodes are being developed to support new functions. It takes

lS-expresslon consists of a sequence of alphanumeric characters or a sequence of S-expressions enclosed by a pair of
parenthees.

FIRMWARE APPROACH TO FAST LISP INTERPRETER 5

about three minutes to create a binary image of WCS, which is down loaded to WCS from the
front-end processor (FEP).

A mini-Lisp system is implemented on various FEP's such as PDP-11, VAX and NTT's DPE
and it provides primitives to access various hardware resources of ELIS such as WCS.
sequencer, Y-bus, and processor status word. Therefore, the loader and debugger of microcodes
are written in this mini-Lisp system. Since the user can inspect the status of ELIS
interactively via this mini-Lisp system, the productivity of the development of microcodes was
very high. The debugging tools was also being developed during the debugging of the
microcodes.

2.3. Language aspect of TAO
TAO is a Lisp dialect and upward compatible with Common Lisp [10]. However, it is not a

simple Lisp dialect but a very powerful language. TAO supports various programming
paradigms within Lisp world; logic programming, object-oriented programming, Fortran/C-like
programming and concurrent programming. The logic programming is embedded in Lisp by
extending function types to support the primitives of logic programming; pattern matching
(unification) and choice function types. The object-oriented programming is embedded in Lisp
by extending eval. That is, Common Lisp signals an error for a form whose car is not a
function, while TAO treats it as a message passing form. For example, (1 + 3) is a message
passing form which expresses that a message + is sent to an object 1 with an argument 3. This
is an implicit message passing form whose car should be checked whether it is a function.
Explicit message passing form is represented by [1 + 3], whose meaning is the same as
(1 + 3). The factorial function can be defined as follows:

(defun fact (n
(if n 0)

(n * (fact (n - 1)))))

In object-oriented programming, a factorial can be defined as a method for the class integer.
The program is

(defmethod (Integer fact) ()
(if Jsulf - 0]

[self * [self - 1] fact]]))

and [10 fact] calculates the value of factorial of 10. TAO provides a powerful set of
concurrent primitives and its operating system is implemented on these primitives. Therefore,
the TAO system supports multi-user/multi-task environments and up-to eight users can login
the same ELIS at the same time.

In this paper, we will focus our attention only on Lisp programming and object-oriented
programming for the simplicity of discussion. The concept of logic programming and
concurrent programming in TAO will be discussed in [13].

3. Bottlenecks of interpreted execution
The execution of Lisp programs is divided into four categories, variable search, function call,

type checking and real computation. In each phase, speed up is needed to provide a fast
interpreter.

N•

I 1t '

FIRMWARE APPROACH TO FAST LISP INTERPRETER 6

3.1. Variable search
Common Lisp has two kinds of variables; lexical (local) and special (non-local) variables. In

the factorial program, a variable n is a lexical variable. Since lexical variables can be looked
up statically, they can be accessed directly in compiled codes. However, it is one of the main
problems for interpreter to speed up the access of lexical variables.

Special variables are looked up dynamically in the context of computation. For example, a
built-in function, print refers a special variable *print-pretty*. Consider the following
program:

(defun f (x)
(let ((prnt-pretty t))

(h x))) t1)
(defun g x)

(let ((prlnt-pretty" nil))

(defun h (x)
(print "banner")
print x)) ; (4)

The values of *print-pretty* in executing the print are t for {1} and {3}, nil for {2}. The
value for {4} is decided on the context. Special variables may be implemented by shallow-
binding or deep-binding technique. In shallow-binding, the value of a special variable is
stored in the value cell of each variable. Thus, no search of special variables is needed in
shallow-binding. New context for special variables is established when entering a function
which contains the definition of special variables and old context is recovered when exiting the
function. In other words, an old value of special variables is saved and a new value is stored
in the value cell of special variables. In deep-binding, special variables and local variables are
stored in a function frame or on the stack and to access a variable, the function frame chain
or the stack is traversed. Therefore, shallow-binding provides faster variable lookup than
deep-binding. However, the former is more expensive under concurrent programming, because
process switch requires saving and restoring a context for special varia.es.

The implementation of TAO on ELIS adopts deep binding for special variables. This is
because the cost of process switch is smaller in deep-binding implementation than in shallow-
binding implementation. Furthermore, debugging tools are easy to construct in deep-binding
implementation, because all information on context of computation is pushed on the stack in
the manner that their stored position is directly associated with the corresponding activation
frame. Therefore, for example, the backtrace function is quite easy to implement.

3.2. function call
Since Common Lisp provides a rich variety of lambda bindings such as optional arguments

with/without default values, rest arguments and keyword arguments, the function call is quite
heavy, especially for interpreter. Consider the following example:

(defun
foo (a b

&optional (c 30) d (e 123 exist-p)
&rest x
&key start (end 10)
&aux Index (result 3))

An indicator of &optional indicates optional arguments and paired list specifies a default
value. &rest indicates arbitrary number of arguments and &key indicates keyword arguments.

.

FIRMWARE APPROACH TO FAST LISP INTERPRETER 7

&aux declares local variables. In some cases, the actual computation may be done while
processing function call. Macro function also introduces overheads for interpreter, because
macro form is expanded before its evaluation.

3.3. type checking
Since Lisp is one of the languages which has the richest data types, type checking is very

important to provide the validation of computation. In addition, some data types are verj
complex and their manipulation functions are overloaded. For example, number type in
Common Lisp contains rational, float and complex; rational contains integer (fixnum and
bignum - integer of infinite precision) and iatio, float contains short float, single-float,
double-float, and long-float. A function + should work well for any type of numbers and any
combination of types. Therefore, number functions should dispatch an appropriate subfunction
to do the calculation. Since Common Lisp provides more than 20 data types, checking of
arguments is extensively performed to validate the correctness of the computation.

0

3.4. real computation
Actual computations of Lisp programs are data manipulations such as list handling,

numerical computation, infinite precision computation, string manipulation and vector
handling. In other words, almost all kinds of computations provided by other languages may
appear in Lisp programs. In the TAO/ELIS system, most of Common Lisp functions are
implemented in microcodes to speed up the execution. In addition, some functions which are
critical to the speed of applications such as a screen editor and networking programs are
implemented in microcodes. Since this phase is a general problem for compiled codes and
interpreter, we will not discuss it any further here.

4. Speedup techniques for Lisp interpreter

4.1. Usage of Tag
The implementation of TAO on the ELIS machine uses the tag in four ways.

1. To represent data types and internal data types 0
2. To speed up the interpreter and decrease the memory consumption -N-,
3. ' o make S-expression more readalle to human
4. To realize new computation mechanisms such as message passing

The tag is used as a pointer tag not a self-descriptive flag in the TAO/ELIS system. That is,
a pointer includes a tag which indicates the property of the data pointed by the pointer.
Invisible pointer is originally introduced to implement logic programming, but is used
extensively to speed up the interpreter. Some data types and invisible pointers are listed in
Table 4-1.

Checking data types is performed very efficiently in multiple branch of microcodes. If the
data is given to the Y-bus at the previous irstruction, branch occurs after executing the current
instructions. In the microcode of car funcion shown in Appendix III, the branch instruction
(br tag4-0 al) is performed by the Y-bus result yielded by the instruction labeled by a7.
However, it is neither possible nor practical to do 64-way, 33-way or 32-way branch in each
function body to check data types because of limit of WCS. Therefore, data types are first
encoded to smaller groups of data. Note that the overheads introduced by this subgrouping are
only one or two microinstructions.

'5 V

- -WW -

FIRMWARE APPROACH TO FAST LISP INTERPRETER 8

Table 4-1: Some data types and invisible pointers

Data types or meaning
invisible pointers

nil nil and 0 are discriminated to
give more readable form to human.

shortnum 24 bit integer
bignum integer of infinite precision
ratio ratio, e.g., 2/3
float floating-point number
complex complex number
id symbol
keyid keyword symbol
sysid special symbol
logic logical variable for logic programming
char character
str string
fatstr string with font information
filstr string with fill pointer
vector vector
applobj function object
cell cell
nancell named cell, e.g. table(i j k) for I/0.

but the same as (table i j k).
bra bracket
nambra named bracket, e.g., window[move 10 20]
quoted quote, 'too is output as 'foo,

not (quote foo)
backq backquote macro expander
eval comma in backquote or evaluation

before unification
icar invisible pointer to car of cell

(Cdr of cell is invisible)
icdr invisible pointer to cdr of cell

(Car of cell is invisible)
splvar special variable or closed variable
evalvar preprocessed variable, a kind of Icar
evallogic preprocessed logical variable, a kind of icar
evalinst preprocessed instance variable, a kind of icar
evalcdr macro expanded form, a kind of icar
shadow preprocessed result for let, prog, a kind of icar
comment comment, comment is stored by

using an invisible pointer, a kind of icdr

FIRMWARE APPROACH TO FAST L!SP IDN"TERPRETER 9

4.2. Variables in TAO
The variables in TAO are classified into lexical variables, special variables, semi-global

variables and global variables. Semi-global variables are process-wide global, while global
variables are system-wide global. Semi-global variables are introduced to provide the same
mechanism as global variables to each process, because some variables in a process must be
stable against accidental process reset. For example, a variable, *hlstory-objo, which holds
the top-level loop conversation history, is declared as a semi-global variable attached only to
the user main process.

The order of variable lookup is (1) lexical variables, (2) special variables, (3) semi-global
variables, and (4) global variables. If the current environment is a message passing form,
instance variables are checked before special variables. Access to an instance variable of an
object will be discussed in the section of instance variables.

4.2.1. Mechanism of variable search
Since TAO uses a single stack, function frames and values are pushed on the stack. A

function frame consists of chain pointers to access and control frames, function objects,
arguments, and other information such as lexical scope limit and a flag which indicates
whether special variables are contained or not.

The value of a lexical variable is pushed on the stack as an element of a function frame,
while its name is not pushed. The variable names are stored in the vector, called how-to-bind
vector which can be accessed via function object. To get the value of a lexical variable, the
interpreter searches for the name in the how-to-bind vector to know the relative position of
the variable in the frame. The interpreter repeats this lookup till it finds the variable or up to
the limit of lexical scoping frame. If the variable is found, its value is returned. If the
variable is not found and is declared as special, special variables are sought. Otherwise, an
error is signalled. Special variables are pushed on the stack as a pair of variable name and
value with a special invisible tag, called splvar. Since a frame has a flag which indicates
whether special variables are contained in it, a frame without special variables are skipped and
all frames are not traversed in searching for a special variable. If no special variable is found
in the frame chain, semi-global variables are sought. If no semi-global variable is found, then
the value of global variable is returned. However, if the value is unbound, an error is
signalled.

If a variable is accessed in the body of a method, instance variables are sought before
checking special variables. That is, the order of variable lookup in the body of a method is
(1) lexical variables, (2) instance variables, (3) special variables, (4) semi-global variables, and
(5) global variables.

4.2.2. Preprocess of lexical variables
The lexical variables are preprocessed at the time of definition. That is, a lexical variable is

converted to a pair of variable name and its variable position on the stack with a tag evalvar.
Variable position consists of fchain and offset. Fchain is a count for access frame chain and
offset is a deviation from the target frame. This preprocess may be considered as a very
simple compilation. Figure 4-1 shows a preprocessed form of the taral function. In the
figure, (evalvar)(x. #x200) indicates that the position of a variable x in the stack is specified
as fchain is 0 and offset is 2.

4.2.3. Variable cache
Variable cache is used for special variable, semi-globals and globals in order to speed up the

search of these non-local variables. Variable cache is attached to each process. When a new
function frame is created and if it contains special variables, the special variables are registered
to the variable cache. When exiting a function, entries corresponding to the special variables
are cleared whether they hold exactly the special variable bindings or not. Cache entries for
semi-global and global variables are set only when they are' accessed. Note that no anomaly
will occur even if there exist a special variable and a semi-global or global varible with the
name name declared in a program. The variable cache is stored in each process. To search

-A' " I , "N*w I~ - ***

FIRMWARE APPROACH TO FAST LISP INTERPRETER 10

(defun taral (x y z)
(if C> X y)

(taral (taral (1- x) y z
taral 1- y z x)
taral (- z x y)

y))

is preprocessed and converted to

(defun taral (x y z)
(If (> {evalvar)(x #x200)

{evalvar} (y #x300))
(taral

(taral (1- {evalvar}(x . #x200))
{evalvar}(. #x300)
{evalvar}(z #x400))

(taral (1- {evalvarJ(y . #x300))
{evalvar (z . #x400)
levalhar (x . #x200))

(taral (1- {evalvarj(z . #x400))
(evalvar}(x . #x200)
(evalvar}(y . #x300)))

{evalvar}(y . #x300)))

Note that #x200 reads 200 in hexadecimal.

Figure 4-1: Preprocessing of lexical variables

for a non-local variable, the interpreter checks the cache and return the value if found. If the
cache entry is void or holds other variable binding, that is, cache doesn't hit, the frame chain
is traversed to search for the variable as described before. If the cache hits, the performance
of this cache mechanism is quite similar to that of shallow-binding technique. Note that the
variable cache is automatically write-through, because cache entries hold a binding cell tagged
with splvar. Note that the tag is used as a pointer tag, any data can be carried out to
anywhere.

TAO provides direct access methods to global and semi-global variables. (Value
expression) and (sg-value expression) are used to access a global and semi-global
variable directly, respectively. Semi-global variables are sought by a binary search. If global
or semi-global variables are used as a means of communications between several functions,
value or sg-value will give a direct and fast access method to the user.

4.2.4. Preproces of Instance variables
Instance variables are not stored on the stack but in an instance vector. Instance vector is

held as a value of a variable self, which is a kind of lexical variable and pushed on the stack
as the first argument.

Since object-oriented system in TAO provides a hierarchical decomposition of data and
programs, each class has only its own definitions of instance variables for data and methods
for programs. Each class has several superclasses whose instance variables and methods are
inherited to it.

Each class has its all instance variables including the inherited ones from superclasses and,
thus, the offset of the same instance variable in the instance vector may vary among classes.
If inherited methods are copied to subclasses, the offset can be determined. This copying
technique is not adopted in the TAO/ELIS system by considering the tradeoff among memory
waste and efficiency. Instead of copying, instance variables are preprocessed to point to self,
not to themselves. This preprocess is the same as that of lexical variables, except the tag.

%7.

FIRMWARE APPROACH TO FAST LISP INTERPRETER 11

That is, an instance variable is converted to a pair of the variable name and the variable
position with a tag evalinst. After getting an instance vector, instance variable is sought by a
simple linear hashing.

4.3. Function calls

4.3.1. Function invocation
Symbols in TAO has one of four tags: sysid, id, keyid and logic (see Table 4-1). The latter

two tags are for speedup to check a keyword and logic variable, respectively. Symbols with
sysid tag are microcoded primitive functions such as car, cdr, cons and so on. The entry
address of sysid function in microcodes is the same address of a sysid symbol. That is, if the
address of car is #143 (in octal) in memory, the entry address of microcodes of car is #143
in WCS (see Appendix 111). Furthermore, checking the number of arguments is embedded in
the body. Therefore, to lookup a function definition is not needed to check the IV shows the
control flow in evaluating (car ...).

Every function has a function definition table which contains information on arguments and
function body. Common Lisp provides various kinds of arguments of functions such as
obligatory, optional and rest arguments. However, if a function has only obligatory arguments,
it suffice to check only the number of arguments. Such a function is called expr-slmple or
subr-slmpl* and its invocation is faster than expr (interpreted function) or subr (microcoded
function), because checking arguments in the former is much simpler.

4.3.2. Special dispatch of built-in message
In TAO, primitive data types such as integer, list, or symbol, can be treated as a class. These

classes have several built-in messages such as +, (. The method corresponding to these built-in
message is invoked directly without searching the method 'able. The key idea is quite similar
to sysid functions. There are 14 reserved built-in messages: that is, +, -, , *0, /, >, <, ., >=,
-(, /-, . .. and belongs-to for the moment. These built-in messages have a sysid tag and
the entry address of the corresponding method is calculated by adding the offset unique to the
class to the address of a message symbol. Micro assembler and linker supports absolute
addressing as well as symbolic addressing for this purpose.

4.3.3. Fast lookup of message-method table
Object-oriented programming in TAO [9] is quite similar to the original FLAVOR system

[15]. All methods defined to a class including inherited ones are registered in the message-
method table associated to the class. The table is sorted by the address of message, and a
method is sought by binary search. The microcode of binary search is shown in Appendix II.
The cost of method lookup is log2n psecond, where n is the total number of methods defined
in the class including inherited ones.

5. Evaluation of the TAO interpreter

5.1. Benchmark results
The data shown in Table 5-1 except for TAO is an excerpt from (8]. Symbolics-3600 with

Instruction Fetch Unit (IFU) and 8 Mbytes memory is used to compare the performance with
the TAO/ELIS system, because it is the fastest commercial Lisp machine. Symbolics-3600
without IFU is about 30 - 40% slower that one with IFU. Roughly speaking, the interpreter of
the TAO/ELIS system runs much faster than that of Symbolic-3600 but we cannot say which
is faster, the interpreter of the TAO/ELIS system or the compiler of Symbolics-3600. It
depends on benchmarks

The definition of taral-5 is shown in Fig. 4-1 with arguments 10, 5, 0. The tak is a

FIRMWARE APPROACH TO FAST LUSP INTERPRETER 12

Table 5-1: Benchmark results according to [8]

benchmark TAO Symbolics
interpreted interpreted compiled 2

Tarai-5 1.00 44.9 0.17
Tak-18-12-6 1.00 41.8 0.15
List-tarai-4 1.00 36.8 2.52

String-tarai-4 1.00 26.0 3.50
Bignum-tarai-4 1.00 40.8 2.48
Flonum-tarai-4 1.00 30.3 0.26

Bit-A-6 1.00 21.4 0.69
TPU-3 1.00 21.4 1.20
TPU-4 1.00 21.0 1.32
Boyer 1.00 33.8 0.28

1 Release 5.0 without Instruction Fetch Unit
2 Release 6.0 with Instruction Fetch Unit and scheduler off

modified taral, which is well-known in the American Lisp community. Strlng-taral, list-
tarai, blgnum-tara. flonum-taral is a modified taral for various data types. For example,

(defun list-taral (x y z)
(If (< (car x) (car y))

(1 Ist-taral
list-taral copy (cdr x)yz
list-taral copy (cdr y)zx

(list-taral (copy (cdr z)) x y)
y))

is the definition of list-taral and the the speed is measured by

(list-taral," 1 2 3456789 10)

5 8 9 10)

which is a variation of (taral 8 4 0). These data shows that TAO provides efficient data
type manipulations except for floating point operations. This is because 64-bit IEEE floating
point number is manipulated by microcodes. These operations will be implemented by
hardware in the future. The bit produces all permutations of a list of length 6 by a mapping
function. The TPU is a theorem prover by Unit resolution and its program size is about 400
lines. The Boyer is a well-known benchmarks, but the size of program is smaller than that of
TPU and it uses property lists extensively.

The process switching takes about 40 psec. Although logic programming is not discussed
here, the speed of logic programming in TAO is about 11.5 KLIPS. I

FIRMWARE APPROACH TO FAST LISP INTERPRETER 13

5.2. Speedup of variable access

5.2.1. Lexical variables

Table 5-2: Execution time ratio between non-/preprocess

tak-18-12-6

preprocessed 1.00
no preprocess 1.62

The typical time to access a lexical variable is 1.7 psec, while the compiled code takes 0.6
psec. Table 5-2 shows that speed-up factor by preprocessing lexical variables to evalvar is 1.62
for the tak function.

5.2.2. Special variables
The programs shown in Fig. 5-1 proves that benefit of variable cache will be gained if the

same special variable is accessed more than twice, that is, for all n where n > 2. Of course, the
cost includes cleanup time to remove the entry of x from variable cache as well as setup time.
Note that Gabriel's stak [3] (tak function with special variables) runs slower with variable
cache than one without it, because every special variable is accessed only once. Since an expert
building tools called KRINE [6] uses many special variables, KRINE runs two to seven times
faster with variable cache. Its resulting speed is comparable to compiled codes of KRINE on
Symbolics-3600.

(defun f x)
declare (special x))

(defun g () x1 x2 ... xa)
where xt is x.

Figure 5-1: Benchmark to evaluate variable cache
for special variables

5.2.3. Instance variables
Table 5-3 shows the speed to access some instance variables of an object which has 50

instance variables. Instance variables are accessed in two ways; as a name and by a message
passing. Consider the following object.

(defclass ship () (x-pos y-pos) ()
:gettable :settable)

(defmethod (ship distance) ()
(sqrt [x-pos 2] +

[self y-pos] 2]]))
The class ship has two instance variables and these variables are accessed by its name. In the

FIRMWARE APPROACH TO FAST LISP INTERPRETER 14

distance method, the value of x-pos is accessed by its name, while the value of y-pos is
accessed by a message passing, [self y-pos]. The speedup factor by preprocessing is from
1.5 to 5.8 and 1.4 for a name access and a message passing, respectively. Name access for the
last instance variable in an instance vector is the most time consuming because the search is
linear from the first instance variable to the last one.

Table 5-3: Speed of instance variable access

Instance ELISI ELIS2 Symbolics TI/Explorer
variable interpreter compiled compiled
position

first 1.36 2.47 0.47 0.91
by MP3 1.94 2.32 2.53 5.87

last 1.36 9.23 0.45 0.94
by MP3 1.83 2.38 2.53 5.88

The unit time is microsecond.
1 Preprocessed 2 Not-preprocessed
3 MP a message passing

The CARE system [1] is an instrumented multiprocessor simulation system developed at
Knowledge Systems Laboratory, Stanford University. The CARE system is a large system (the
size of source codes is about 600K byte) implemented in object-oriented programming. That
is, it is written in ZetaLisp and Flavors system [IS] and uses only a few special variables. We
ported the CARE to TAO (CommonLisp) with TAO's object-oriented system. The interpreted
codes of the CARE system runs on the TAO/ELIS system nearly as fast as the compiled codes
of the TI/EXPLORER with 8 Mbytes memory system.

5.3. Speedup of function Invocations

5.3.1. Function invocation
Table 5-4 shows that the speedup by expr-slmple function is about 1.12 for tak-18-12-6.

The tak function uses three arguments. The more the number of arguments of expr-slmple is,
the faster a function is invoked.

Table 5-4: Execution time ratio for exper-simple

tak-18-12-6

expr-simple 1.00
expr 1.12

p

FIRMWARE APPROACH TO FAST LISP INTERPRETER

5.3.2. Method search
Table 5-5 shows that sending a built-in message is executed almost as fast as Lisp functions.

Note that a bracket form such as [x + y] is treated as a message passing form without
checking a normal form, while a form (x + y) is first checked whether x is a function or
not. This overhead for the latter is not negligible if the real computations is not small like +
or a. As a consequence, the user is not recommended to use a parenthesized form such as (x
+ y) as an overloading means to a message passing, although this overloading is a new
interpretation of Lisp forms proposed by the TAO/ELIS system.

Table 5-5: Speed comparison between prefix notation
and infix notation

form time form time

(+ x y) 12.92 (a x y) 11.74 I
(x + y) 18.10 (x - y) 18.17
ix + y1 12.06 [x - y] 12.09

unit: microsecond

(defun fib 'n()
(if n 2)

(+ (fib (- n 1)) (fib (- n 2)))))

Figure 5-2: Lisp style Fibonacci function

(defmethod (integer fib) ()
(if [self < 2]

I
C[[self - 1] fib] +
[[self - 2] fib]]))

Figure 5-3: Object-oriented style Fibonacci function

Table 5-6 shows the results of Fibonacci function written in Lisp and object-oriented
programming (Fig.5-2 and Fig.5-3) and gives two conclusions. First, the method search is only
a 5% overhead to Lisp function call. Second, if the method is found in the worst case by
binary search, the execution is slow down by 7% and 10% for 30 and 100 user-defined
messages, respectively. Since the overhead is small, we can say that the merit of object-
oriented programming is not be subsumed by the overhead of execution. In fact, many
applications are implemented in object-oriented programming in the TAO/ELIS system,
examples being an Emacs-like editor, TCP/IP and network application programs, operating
system.

6. Discussion
The experience of implementing the TAO/ELIS system proves that a naive implementation

of Lisp interpreter in firmware cannot provide high performance and that microcoded
interpreter should incorporate many speedup techniques. With various techniques discussed in
this paper such as data dispatch, variable search, function invocation, method search, the
resulting TAO/ELIS system provides a very fast interpreter of which speed is comparable to
the compiled codes of commercial Lisp machines.

FIRMWARE APPROACH TO FAST LISP INTERPRETER 16

Table 5-6: Speed comparison
between Lisp and Object-Oriented programming

Lisp style time in psec

(fib 19) 783
(fib 22) 3,394
(fib 25) 14,376

Object-oriented style size of method table
1 30 100

19 fib] 795 853 880
22 fib] 3.364 3,610 3.730
25 fib] 14.246 15,294 15,800

These techniques presented in this paper can be applied to any (compiler-bases) deep-binding
Lisp system as well as any Lisp interpreter. Much attention is recently paid to implementation
of Lisp by deep-binding mechanism, because parallel Lisp system forces such an
implementation [2, 4]. In parallel or concurrent Lisp system, many processes are spawned and
process switching is critical to the performance. If the variable binding mechanism is
implemented by deep-binding mechanism, process switch is very easy because all information
on computations is stored in the stack. This is the criteria why the TAO/ELIS system adopts
deep-binding mechanism. Although the TAO/ELIS system is a Lisp machine system, it works
as a multi-user system like Unix.

The TAO/ELIS system proves that the high level approach to firmware development
environment is very important. That is. micro assembler and linker are written in TAO itself
and micro loader and debugger are written in mini-Lisp system running on the FEP. As a
consequence, any simulator, either hardware level or software level, was not used to design and
develop the breadboard ELIS and the TAO interpreter. Note that the TAO/ELIS system has
no machine instructions as convensional machines. The system uses the bytecode interpreter to
execute compiled codes, but most computations are executed by microcoded Lisp functions.
Byte codes manipulats only function calling and exiting. If a set of machine instructions is
fixed, it is very difficult to incorporate new functionalities to the system. As Lao-Tsu said
"The TAO named TAO is not the true TAO", the TAO/ELIS system is ever evolving. In fact,
the TAO/ELIS system supports object-oriented programming, logic programming, Fortran/C-
like programming, concurrent programming and database management capabilities as well as
Lisp. We believe that firmware approach gives this flexibility to language design.

The current status of the TAO/ELIS is that Japanese word processing system, window system.
Emacs-like editor, network system, C programming environment (C is compiled to TAO) and
other utilities are developed for the TAO/ELIS system. Even if the TAO/ELIS system is an
Interpreter-centered system, compiler is useful for memory economy and further speedup. The
development of compiler for Lisp and object-oriented programming is almost completed and
that for logic programming is under development.

It will be an interesting research theme to use the ELIS machine to implement other high-
level language such as Smalitalk, because the ELIS machine is not dedicated to Lisp but a
general-purpose stack machine. In addition, powerful firmware developing environments are
provided by the TAO/ELIS system. This approach will be in a striking contrast to RISC
approach.

I-

FIRMWARE APPROACH TO FAST LISP INTERPRETER 17

Acknowledgments
The authors thank Yasushi Hibino and Kazufumi Watanabe, NTT Human Interface

Laboratories, who designed ELIS and VLSI ELIS and made the prototype ELIS. They express
thanks to their colleagues of NTT Software Labs for developing various application softwares
and evaluating the TAO/ELIS system. They also express thanks to the members of NTT
Human Interface Labs, to design and develop VLSI ELTS. They thank Dr. Katsuji Tsukamoto
for his continuous support to the NUE project. They also thank Prof. Edward Feigenbaum for
giving two of them a chance to write this paper and to evaluate the TAO/ELIS system at
Knowledge Systems Lab, Stanford University. Computer facilities were partially provided by
NIH grant RR-00785 to Sumex-Aim and by DARPA Contract F30602-85-C-0012, NASA
Ames Contract NCC 2-220-SI. and Boeing Contract W266875 to Advanced Architectures
Project at KSL.

Ii
FIRMWARE APPROACH TO FAST LISP INTERPRETER 18

References

1. Delagi, B.A., Saraiya, N.P., Nishimura, S., and Byrd, G. An Instrumented Multiprocessor
Simulation System. Report KSL 86-35, Knowledge Systems Laboratory, Stanford University,
Palo Alto, CA, January, 1987.

2. Gabriel, R.P. and McCarthy, J. Queue-based multiprocessor Lisp. Conference Record of
the 1984 ACM Symposium on Lisp and Functional Programming, ACM, Austin, Texas,
August, 1984.

3. Gabriel, R.P.. Performance and Evaluation of LISP Systems. MIT Press, Cambridge, MA,
1985.

4. Halstead. R. MultiLisp. Conference Record of the 1984 ACM Symposium on Lisp and
Functional Programming, ACM, Austin, Texas, August, 1984.

5. Hibino, Y., Watanabe, K., and Osato, N. The architecture of Lisp machine ELIS (in
Japanese). Report of WGSYM 24, IPSJ, June, 1983.

6. Ogawa, Y., Shima, K., Sugawara, T. and Takagi, S. Knowledge Representation and Inference
Environment: KRINE, --- An Approach to Integration of Frame, Prolog and Graphics.
Proceedings of the international conference on Fifth Generation Computer Systems (FGCS
'84), ICOT, Tokyo, Japan, October, 1984, pp. 643-651.

7. Okuno, H.G., Takeuchi, I., Osato, N., Hibino, Y. and Watanabe, K. TAO : A Fast
Interpreter-Centered System on the Lisp Machine ELIS. Conference Record of the 1984 ACM
Symposium on Lisp and Functional Programming, ACM, Austin, Texas, August, 1984, pp.
140-149.

8. Okuno, H.G. The Report of The Third Lisp Contest and The First Prolog Contest. Report
of WGSYM 33-4, IPSJ, September, 1985.

9. Osato, N., Takeuchi, I. and Okuno, H.G. Object-Oriented Programming in TAO (in
Japanese). In Suzuki, N., Ed., Object-Oriented System, Kyoritsu Publishing Inc., Tokyo, Japan,
1985.

10. Steele, G.L.. COMMON LISP : The Language. Digital Press, Burlington Massachusetts,
1984.

11. Takeuchi, I., Okuno, H.G. and Osato, N. "TAO - A harmonic mean of Lisp, Prolog and
Smalltalk." SIGPLAN Notices 18, 7 (July 1983).

12. Takeuchi, I., Okuno, H.G. and Osato, N. "A List Processing Language TAO with Multiple
Programming Paradigm." New Generation Computing 4, 4 (1986).

13. Takeuchi, I., Okuno, H.G., Osato, N., Kamio, M. and Yamazaki K. A concurrent multi-
paradigm list processor TAO/ELIS. Proceedings of Fall Joint Computer Conference (FJCC'87),
ACM & IEEE, Dallas, Texas, October, 1987. to appear

14. Watanabe, K., Ishikawa, A., Yamada, Y. and Hibino, H. A 32b LISP Processor. Proc. of
IEEE International Solid-State Circuits Conference (ISSCC '87), IEEE, New York City,
February, 1987, pp. 200-201, 394.

15. Weinreb, D., Moon, D. and Stallman, R.M. Lisp Machine Manual. LMI, 1983.

WITNM~m TM 'WX

FIRMWARE APPROACH TO FAST LISP INTERPRETER 19

1. Microinstruction Format
<< Type I >> Memory Reference type

6 6 6 5 5 5 4 4 4 3 3 3 3 2 2
3 1 0 3 20 9 4 3 8 7 2 1 2 1 0

S---------------- - --

le I*b 00+: ALU Path Y-D A-S B-S Memory Sequencing I
S------------ +--

<< Type II >> SOC Control type

66 6 55 564 4 4 3 3 3 33 2 2
3 1 0 3 2 0 9 4 3 8 7 2 10 2 1 0
1--------+-----------------------------+---------------------------------x
D A
0 L
b 01 ALU Path Y-D A-S B-S U SOC SequencingUI
g +I--

<(Type III >> Immnediate type

6 a6a 5 5 5 4 4 4 3 3 33 33 3
3 1 0 3 2 0 9 4 3 8 7 43 2 10 0

1 ------------------------------ ------+--------------

O E A
e AUX- R m L

b o AU Path Y-D A-S cont T i U Immediate

«< Type IV >> Reserved for floating point operations

00 legend

ALU c ALU carry control
Emit MSB of Immediate data

FIRMWARE APPROACH TO FAST LISP INTERPRETER 20

1I. Micro code of binary search for id-message

; binary search for id-message
: r6 - the lowest position of the current table
; r2 = the highest position of it
: carO - position to be examined
; rO - key

all relevant addresses are nilnuml
returns carl = corresponding method if not nil

Ilbins + r6 rZ car0) sra (bo carO mdrl)) ; carO =middle point
lp - r2 r6)) ; something remains?

- carO l r3) ; r3 - next possible highest pos
(br n (cont not-found))) ; yes/nothing remains.

Icont (-cdrl rO)) ; compare key and contents
(carO 1 r4) ; r4 - next possible lowest pos
(br gel (big found small))) ; bigger/found/smaller

(Ifound (and carl #17777777777 carl) rts) ; return method without gcmark

Ibig (+ r6 r3 carO) sra (bo carO mdrl)) ; bigger, get the middle point
(mov r3 r2) (goto lp)) ; update the highest position

Ismall + r4 rZ carO) sra (bo carO mdrl)) ; smaller, get the middle point

(mov r4 r6) (goto lp)) ; update the lowest position

(Inot-found
(mov #20000000000) rts) ; return a not-found code

I

II

II

S

FIRMWARE APPROACH TO FAST LISP INTERPRETER 21

III. Microcode of the body of the car function
(local *nil-car 4) ; car-nil error flag
(.local :car t(sysid #143)) : address of symbol car

*entry point of car body -- its argument is on sp

(!Icar (and <sp>+ gmc carO) (boc carO mdrl) ;read carO to mdrl
(br nhap (a8 a7)));check special condition

something-happened/

*entry point of car -- its argument is on carO

(1fcar.s (mov carO) (boc carO mdrl)
(br nhap (a8 a7)));check special condition

(10 mv car rpr somethlng-happened/*

(br tagcadbl (a3 a4)))branch on cadbl data type
*error?/ok

(1&4 (mov 1 rpf) (br tag4-O al)) ;cadble, invisible?
(.cas at adr#rpf 1 means rplaca assign

imv-a (mov cart carO (goto cas) invisible in car
in- may cdrl carO (goto car:s)) ;Invisible in cdrt (-dmay <sp>) (go a2))):(carl . cdrl) is founded.

yield return addr on Y-bus
(1a2 (and cart gmc (sp>) return) ;push return value and return

(1a3 (and sysmode ;n1-car) ;car-nil error?
(br tagnil 7a5 a6))) ;is it nil? no/yes

(taG (clr rpf) (br z (a9 a1O))) ; should be car-nil error ?
;nil Is not rplacable

(1alO (may <sp>) (goto rtnnil')) ; not error. returns nil

1a9 Or re)) ;car-nil is error
Ialas may :car r7)) ;errored fn is car

may :illarg ri)) ;set error message
goto err))

1a5 mov carD r8) (goto ael)) ;non-car-cdrable thing
11a8 mov carD -<ap>); store back arg

moy car' -<sp)))
may sbr) (br a vrhp);stack overflow?

Icar' may <sp>+ car) bo cNA miri) ;resume car operation
goto a7))

FTRMWARE APPROACH TO FAST LISP INTERPRETER 22

IV. Evaluation of a form (car ...)

Entry of Eval
;(sp> -> form
;<sp+1> -> return address

1 Ilval (and (sp>+ gmc carO) (boc carO mdrl) (br nhap (evi ev)))
11ev (br tag5-O eval-disp) (corn sysmode) : check evalhook
I Iev-nohook ; eval without hooking

(br tag5-O eval-disp) (mov -1))

(.case Ieval-disp dtyp#
((list dnll keyld shortnum bignum ratio float codnum undef
blgfloat str char fatstr filstr complex shortfloat)

(Imov <sp>) (br y8 (hevconst evconst)))(list sysid Id)
(and carO gmc ri)
(br y6l (hi Ispy lispv)));ri - variable to be searched

((list cell nanicell) ;For the case of (car ..
(mov carO -(sp>)
(br y6 (hform form)));push form onto stack

Analyze a form
(Iform (asrc carl) (aluh zero) (ydes rpf) 24bw ; clear rpf every time for form

(boc cdrl mdrO)); get arg list in mdrO
;(flrst-arg .arg-tall)

(Iformi (br t:g5-0 car-form) ; dispatch car of form
(Mov crl ri)) ; ri -car of form

(.case car-form dtyp#
(sysid (and <sp> gmc r2) (br ybr 0)) ; sysid, jump by its addr

rZ - the form
gm clear for indicating that

((lit i logc kyidthis sysid call is from eval

.carl 1 carfl) (bo carD mdrO) ;mdr0 <- (applobj .prop)

Entry of car
(I#143 (mov car (sp>)) ;Symbol-car's address Is #143

(mov cdrl) (goto sysi)) ;car is a label of microcodes

Arguments check
; larg SYS subentry
;Upon entering. r2 - the form

(Ilsysi (mov cdrO) (br tagh5-0 sO)) ;1 arg sysid subentry

(.cae s dtyl ;branch on previous result
inmv-a (mov carD cdrl) bo cdrl mdrO (goto sysi)
inv-d (mov cdr0 cdrl(bo cdrl mdrO) (goto sysi)
dnil (mov (sp>+) (nua sel)) ; no arg. r2 contains the form
1(list cell namcel bra nambra quoted eval# backq assign usym

selfass assignee)
(and carO gmc carD) (boc carO mdrl) ; copy of eval head
(br tagcadbl (s2 s3)))); Is there excess arg? no/yes

ILAAF D

w lw 10 lw
VV

